GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S1

Paper A

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer

S1 Paper A - Marking Guide

1. (a) $\mathrm{P}(X>23.8)=0.2$

M1
$\mathrm{P}\left(Z<\frac{23.3-22.8}{\sigma}\right)=0.8$
M1
$\frac{0.5}{\sigma}=0.8416$
$\sigma=0.5941 ; \sigma^{2}=0.3530$
(b) $\mathrm{P}\left(Z<\frac{21.82-22.8}{0.5941}\right)=\mathrm{P}\left(Z<^{-} 1.65\right)=0.0495$
2. (a) $\mathrm{P}(B) \times \mathrm{P}(A \mid B)=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$

M1 A1
(b) $\frac{\mathrm{P}\left(B^{\prime} \cap A\right)}{\mathrm{P}(A)}=\frac{\frac{5}{16}-\frac{1}{8}}{\frac{5}{16}}=\frac{3}{5}$

M2 A1
(c) $\left(1-\frac{5}{16}\right)+\frac{1}{8}=\frac{13}{16}$

M1 A1
(d) $\mathrm{P}(A) \times \mathrm{P}(B)=\frac{5}{16} \times \frac{1}{2}=\frac{5}{32}$
$\neq \mathrm{P}(A \cap B) \therefore$ not independent
M1
M1 A1
3. (a) $\sum f x=303$

M1
mean $=\frac{303}{60}=5.05$
M1 A1
$\sum f x^{2}=1753$
M1
std. dev. $=\sqrt{\frac{1753}{60}-(5.05)^{2}}=1.93$
M1 A1
(b) (by symmetry) 5

M1 A1
(c) actual std. dev. much lower than in model

B1
tendency to pick numbers nearer the middle
B1
(10)
4. (a)

x	1	2	3	4	5	6
$\mathrm{P}(x)$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$

M2 A2
(b) $\quad \sum x \mathrm{P}(x)=\frac{1}{8}(1+2+3+4+5+18)=\frac{33}{8}$

M2 A1
(c) $\left(4 \times \frac{33}{8}\right)-1=\frac{31}{2}$

M1 A1
(d) $\mathrm{E}\left(X^{2}\right)=\sum x^{2} \mathrm{P}(x)=\frac{1}{8}(1+4+9+16+25+108)=\frac{163}{8}$

M1 A1
$\operatorname{Var}(X)=\frac{163}{8}-\left(\frac{33}{8}\right)^{2}=\frac{215}{64}$ or 3.36
M1 A1
5. (a) 20-29: class width $10 \rightarrow 2 \mathrm{~cm} \quad \therefore$ class width $5 \rightarrow 1 \mathrm{~cm} \quad$ M1
freq. den. $=\frac{18}{10}=1.8 \rightarrow 7.2 \mathrm{~cm} \quad \therefore$ freq. den. $1 \rightarrow 4 \mathrm{~cm} \quad$ M1
(i) $30-34: \quad$ class width $5 \therefore$ width $1 \mathrm{~cm} \quad \mathrm{~A}$
freq. den. $=\frac{24}{5}=4.8 \therefore$ height 19.2 cm
(ii) 50-69: class width $20 \therefore$ width 4 cm A1
freq. den. $=\frac{5}{20}=0.25 \therefore$ height 1 cm
(b) cum. freqs: $2,20,44,74,101,115,120$
$\mathrm{Q}_{1}=30.25^{\text {th }}=29.5+5\left(\frac{10.25}{24}\right)=31.6\left[30^{\text {th }} \rightarrow 31.6\right]$
$\mathrm{Q}_{2}=60.5^{\text {th }}=34.5+5\left(\frac{16.5}{30}\right)=37.3\left[60^{\text {th }} \rightarrow 37.2\right]$
$\mathrm{Q}_{3}=90.75^{\text {th }}=39.5+5\left(\frac{16.75}{27}\right)=42.6 \quad\left[90^{\text {th }} \rightarrow 42.5\right]$
(c)

symmetrical (or slight + ve skew)
A1
(17)
6. (a) T

(b) (i) Bember

A1

(ii) e.g. how near to town centre; size of shop

B2
(c) $S_{P T}=574.25-\frac{37.9 \times 85.8}{6}=32.28 \quad$ M1
$S_{P P}=264.69-\frac{37.9^{2}}{6}=25.288 \quad$ M1
$b=\frac{32.28}{25.288}=1.2765$
M1 A1
$a=\frac{85.8}{6}-1.2765\left(\frac{37.9}{6}\right)=6.2369$
M1 A1
$T=6.24+1.28 P$
A1
(d) $\quad P=6.8$ giving $T=14.917 \quad \therefore £ 14900$

M1 A1
(e) $\quad P=17.2$ which lies outside the set of values used to obtain the equation B1
Performance Record - S1 Paper A

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total
Topic(s)	normal dist.	probability	mean, std. dev., unif. dist., modelling	discrete r. v.	histogram,. interpol'n, boxplot	scatter diagram, regression	
Marks	8	10	10	13	17	17	75
Student							

