

GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

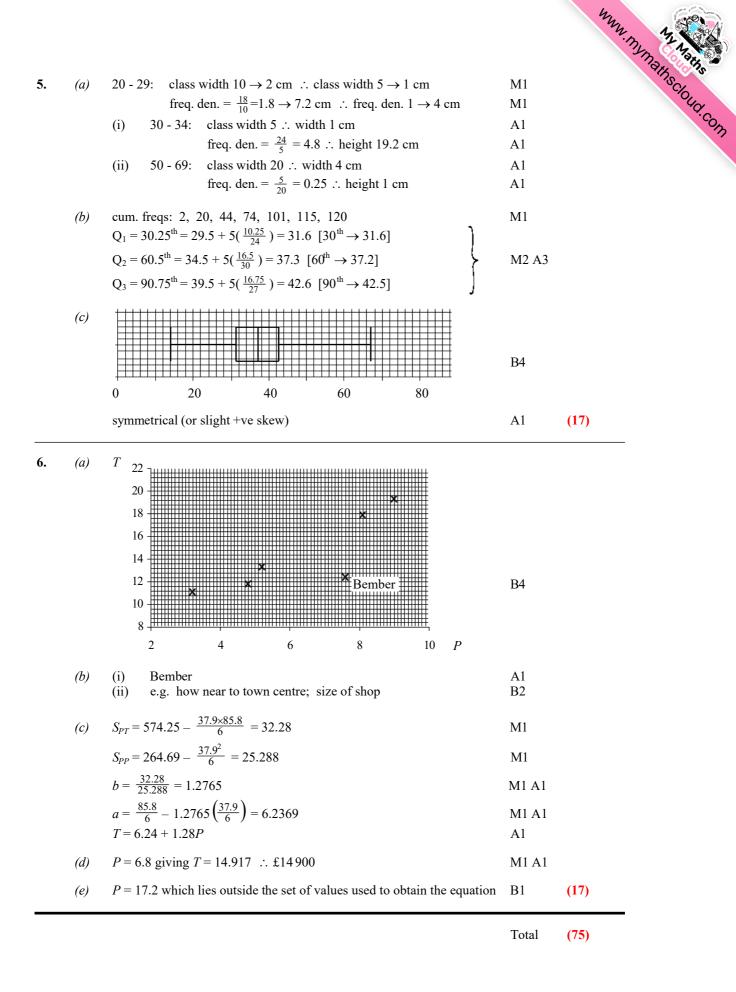
Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper A – Marking Guide

			www.p. M	
		S1 Paper A – Marking Guide	Mu Mu Mainscioud.con M1 M1	2
1.	(a)	P(X > 23.8) = 0.2	M1 49.00	5
		$P(Z < \frac{23.3 - 22.8}{\sigma}) = 0.8$	M1	
		$\frac{0.5}{\sigma} = 0.8416$	B1	
		$\sigma = 0.5941; \ \sigma^2 = 0.3530$	M1 A1	
	<i>(b)</i>	$P(Z < \frac{21.82 - 22.8}{0.5941}) = P(Z < -1.65) = 0.0495$	M2 A1 (8)	
2.	(a)	$P(B) \times P(A B) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$	M1 A1	
	<i>(b)</i>	$\frac{P(B' \cap A)}{P(A)} = \frac{\frac{5}{16} - \frac{1}{8}}{\frac{5}{16}} = \frac{3}{5}$	M2 A1	
	(c)	$(1 - \frac{5}{16}) + \frac{1}{8} = \frac{13}{16}$	M1 A1	
	(d)	$P(A) \times P(B) = \frac{5}{16} \times \frac{1}{2} = \frac{5}{32}$	M1	
		$\neq P(A \cap B)$: not independent	M1 A1 (10)	
3.	(a)	$\sum fx = 303$	M1	
	1	$mean = \frac{303}{60} = 5.05$	M1 A1	ļ
		$\sum f x^2 = 1753$	M1	ļ
		std. dev. = $\sqrt{\frac{1753}{60} - (5.05)^2} = 1.93$	M1 A1	ļ
	(b)	(by symmetry) 5	M1 A1	ļ
	(c)	actual std. dev. much lower than in model tendency to pick numbers nearer the middle	B1 B1 (10)	
4.	(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M2 A2	
	<i>(b)</i>	$\sum x P(x) = \frac{1}{8} (1 + 2 + 3 + 4 + 5 + 18) = \frac{33}{8}$	M2 A1	
			271 4 1	ļ
	(c)	$(4 \times \frac{33}{8}) - 1 = \frac{31}{2}$	M1 A1	
	(d)	$E(X^2) = \sum x^2 P(x) = \frac{1}{8} (1 + 4 + 9 + 16 + 25 + 108) = \frac{163}{8}$	M1 A1	
		$\operatorname{Var}(X) = \frac{163}{8} - \left(\frac{33}{8}\right)^2 = \frac{215}{64}$ or 3.36	M1 A1 (13)	

Performance Record – S1 Paper A

www.mymathscioud.com

Question no.	1	2	3	4	5	6	Total
Topic(s)	normal dist.	probability	mean, std. dev., unif. dist., modelling	discrete r. v.	histogram, interpol'n, boxplot	scatter diagram, regression	
Marks	8	10	10	13	17	17	75
Student							